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Convection in a rotating cylindrical annulus.
Part 4. Modulations and transition to chaos at

low Prandtl numbers
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Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

(Received 9 October 1996 and in revised form 18 April 1997)

Thermal Rossby waves driven by centrifugal buoyancy in a rotating cylindrical fluid
gap become unstable right at the onset of convection when the Prandtl number
is small. The Benjamin–Feir–Newell instability leads to modulated thermal Rossby
waves which can also be described by a generalized Ginzburg–Landau equation. A
resonance instability occurs at a finite distance in Rayleigh number from the neutral
curve. It leads to two independent wave patterns propagating past each other and
finally gives rise to vacillations of the amplitude of convection. Most of these features
can be described to a good approximation by a system of three coupled amplitude
equations. Time integrations based on a Galerkin expansion show transitions to
chaotic convection at higher Rayleigh numbers.

1. Introduction
Thermal convection driven by centrifugal buoyancy in the fluid gap between two

corotating coaxial cylinders kept at different temperatures has long been a subject of
dual interest. On the one hand this system offers the simplest example of buoyancy-
driven dynamics with a finite angle between the vectors of gravity and rotation.
This situation is encountered in the case of convection in planets and in stars where
rotation can play a dominant role. In fact, through the introduction of symmetric
conical boundaries at the ends of the annular gap, the asymptotic theory for the onset
of convection at high rotation rates becomes identical to that applicable in the case
of self-gravitating rotating spheres (Busse 1970). The other reason for the study of
the cylindrical annulus is the interesting nonlinear dynamics exhibited by the system.
Sequences of bifurcations lead from the onset of symmetric thermal Rossby waves to
realization of mean flow convection within a relatively small range of the Rayleigh
numbers. The β-plane effect introduced by the variation of height of the annular gap
with distance from the axis is responsible for dramatic differences of the system in com-
parison to a Rayleigh–Bénard convection layer. But in contrast to the latter, the dy-
namics can be described without explicit consideration of the dependence on the third
coordinate in the direction of the axis of rotation. Various types of solutions have been
explored in three previous papers (Busse & Or 1986; Or & Busse 1987; Schnaubelt
& Busse 1992) and several others (Brummell & Hart 1993; Or & Herrmann 1995).
But the case of a low-Prandtl-number fluid has received insufficient attention.

The reduction of the system to two spatial coordinates induced by the constraint
of rotation becomes especially advantageous for low Prandtl numbers where new
dynamical features must be expected. For a certain range of the Prandtl number P
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Figure 1. Geometrical configuration of the rotating cylindrical annulus.

all spatially periodic solutions (with a period length less than the circumference of
the annulus) become unstable and a considerable numerical effort is required for an
adequate description of the dynamics as will become apparent in later sections of this
paper. Some of the features can be described through the use of complex Ginzburg–
Landau equations (CGLE) and modifications thereof. But the full numerical solutions
of the basic equations is necessary to delimit the range of applicability of the simpler
equations.

The plan of this paper is as follows. In §2 a brief outline is given of the basic
equations and methods for their solution. Thermal Rossby waves and their stability
regions at low Prandtl numbers are discussed in §3. In the following section the side-
band mechanisms of instability are analysed in more detail through the consideration
of a generalized complex Ginzburg–Landau equation, while the resonance mechanism
of instability is treated in the weakly nonlinear limit in §5. Some of the time-periodic,
aperiodic and chaotic solutions introduced by the instabilities are discussed in §§6
and 7 for the cases of the sideband and the resonance mechanism, respectively. The
paper closes with a concluding section where open problems are also mentioned.

2. Mathematical formulation of the problem
We consider the problem of convection in a cylindrical annulus rotating with the

angular velocity Ω as shown in figure 1. The basic state of pure conduction is unstable
owing to centrifugal buoyancy if the temperature T2 of the outer cylinder exceeds the
temperature T1 of the inner cylinder by a sufficient amount. We neglect gravity which
in a laboratory experiment will be directed parallel to the vertical axis of rotation.
We shall use the small-gap approximation which allows us to use a Cartesian system
of coordinates as indicated in the figure. The unit vector in the z-direction parallel
to the axis of rotation will be denoted by k. Using the gap width d as length scale,
d2/ν as time scale where ν is the kinematic viscosity of the fluid, and (T2 − T1)P as
temperature scale, we can write the equation of motion for the stream function ψ
and the heat equation for the deviation Θ from the static temperature distribution in
dimensionless form(

∂

∂t
+

∂

∂y
ψ
∂

∂x
− ∂

∂x
ψ
∂

∂y
− ∆2

)
∆2ψ − η

∂

∂y
ψ = −R ∂

∂y
Θ, (2.1a)

P
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ψ
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∂

∂y

)
Θ − ∆2Θ = − ∂

∂y
ψ, (2.1b)
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where ∆2 denotes the two-dimensional Laplacian, ∆2 = ∂2/∂x2 +∂2/∂y2, and Rayleigh
number R, Prandtl number P and the rotation parameter η are defined by

R =
γ(T2 − T1)Ω

2r0d
3

νκ
, P =

ν

κ
, η =

4η0Ωd
3

νL
. (2.2)

In these expressions γ, κ, r0 and L denote the thermal expansivity, the thermal diffu-
sivity, the mean radius of the annulus and its height, respectively.

For detailed derivations of (2.1) we refer to previous papers (Busse 1970, 1986) in
which it has been demonstrated that the deviations from the two-dimensional velocity
field v = ∇ψ × k caused by the conical boundaries give rise to the term proportional
to η in (2.1a). Without this term equations (2.1) are identical to those describing
two-dimensional convection in a Rayleigh–Bénard layer. The deviation from the form
v = ∇ψ × k of the velocity field is of order η0 which is the tangent of the angle
between the conical surfaces and the equatorial plane of the annulus. While η0 is
required to be small, the parameter η is finite and may become large since we are
considering the limit of large rotation rates, Ωd2ν−1 � 1.

The conditions at the isothermal, stress-free cylindrical boundaries are expressed by

ψ =
∂2

∂x2
ψ = Θ = 0 at x = ± 1

2
. (2.3)

Other boundary conditions such as for example no-slip cylindrical walls have been
considered in previous analyses (Schnaubelt & Busse 1992) in order to correspond
more closely to experimental observations. But usually the differences in boundary
conditions introduce only quantitative changes in the properties of the solutions of
the problem. One problem caused by stress-free conditions is that an arbitrary con-
stant zonal flow can be added to the velocity field. But this arbitrariness is removed
when conditions (2.3) are also applied for the y-independent part of ψ. Since ψ must
assume the same value on both walls our rotating frame of reference is defined by
the condition that the mean zonal flux vanishes at all times.

We shall obtain solutions of (2.1) together with conditions (2.3) by using the
Galerkin method in which the dependent variables are expanded into complete
systems of functions that satisfy all boundary conditions,

ψ =
∑
l,n

(âln cos lα(y − ct) + ǎln sin lα(y − ct)) sin nπ(x+ 1
2
), (2.4a)

Θ =
∑
l,n

(b̂ln cos lα(y − ct) + b̌ln sin lα(y − ct)) sin nπ(x+ 1
2
). (2.4b)

After (2.4) have been introduced in (2.1) and the latter have been projected onto the
space of the expansion functions, a system of nonlinear ordinary differential equations

in time for the coefficients âln, ǎln, b̂ln, b̌ln is obtained. We have introduced the phase
velocity c in (2.4) since there is a subset of solutions for which the coefficients are
independent of time when seen from a suitably drifting frame of reference. The
symmetric thermal Rossby waves and the mean flow solutions belong to this subset
of stationary solutions. In order to determine the drift rate c for these latter solutions
we make use of the invariance of the problem with respect to translation in time
and fix the phase of the solution such that ǎ11 = 0. This condition provides an extra
equation for the determination of c. For actual numerical solutions the infinite system
of equations must be truncated. We shall neglect all coefficients and corresponding
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equations with subscript l, n satisfying

l > Nl, n > Nn, (2.5)

where Nl and Nn are integer numbers that can be adjusted such that relevant
properties of the solution do not change if they are significantly increased. Typically
Nl = Nn = 7 was used. But in the case of computations with a long periodicity
interval in the y-direction Nl was increased up to 127.

The stability of stationary solutions of the form (2.4) with constant coefficients can
be investigated through the imposition of infinitesimal disturbances,

ψ̃ = exp{id(y − ct) + σt}
∑
l,n

ãln exp{ilα(y − ct)} sin nπ(x+ 1
2
), (2.6a)

Θ̃ = exp{id(y − ct) + σt}
∑
l,n

b̃ln exp{ilα(y − ct)} sin nπ(x+ 1
2
), (2.6b)

where the complex growth rate σ becomes the eigenvalue in the linear homogeneous
system of equations for the unknowns ãln, b̃ln. For a given stationary solution with
the parameters R, α, P , η the growth rate σ can be determined as a function of the
Floquet wavenumber d. Whenever there exists a value of σ with positive real part
σr , then the stationary solution is unstable. Otherwise it will be regarded as stable.
In this fashion regions of stability in the (R, α)-plane have been determined for given
values of P and η as we shall discuss in the following. Besides the Galerkin method
we shall employ various methods for the analysis of the weakly nonlinear problem
which we shall describe in §§4 and 5.

3. Thermal Rossby waves and their instabilities
The linearized version of (2.1) is solved by (2.4) when all terms except those

corresponding to l = n = 1 are neglected. The dispersion relation for c0(α) and the
expression for the Rayleigh number are given by

c0(α) = η(1 + P )−1(π2 + α2)−1 ≡ −ω0(α)/α, (3.1a)

R0(α) = (π2 + α2)3α−2 +

(
Pη

1 + P

)2

(π2 + α2)−1. (3.1b)

Thermal Rossby waves bifurcate supercritically at the neutral curve given by (3.1b)
from the basic static state of the system. These solutions of the form (2.4) are
characterized by the property that all coefficients with l + n = odd vanish. For
this reason these solutions are also called symmetric thermal Rossby waves. They
correspond to ordinary convection rolls in the limit η = 0 when the relationship
for Rayleigh–Bénard convection is recovered from (3.1b). When the stability of these
solutions is investigated it is found that the disturbances of the form (2.6) separate
into two classes: the even class for which coefficients with odd l + n vanish and the
odd class for which the opposite property holds. For simplicity we shall call the latter
class the odd disturbances, while the former class will be called even disturbances.

A typical example of a stability region is shown in figure 2. The stability boundaries
of thermal Rossby waves indicated in figure 2 are similar to those obtained at Prandtl
numbers of order unity except that the mean flow instability is replaced by another
instability called the resonance instability since it is always characterized by a finite
value of d at which the real part σr of the growth rate reaches a maximum which
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Figure 2. Stability boundaries of thermal Rossby waves for P = 0.1, η = 4000. Thermal Rossby
waves are stable in the shaded region bounded by the parabola-shaped curve (thick solid line) which
indicates the onset of the sideband instability with infinitesimal d, by the dashed curve indicating
the onset of the resonance instability (long dashed line) and by the sideband instability with finite
d (short dashed line). The preferred values of d for the latter two instabilities and the associated
imaginary part σi of the growth rate (in brackets) are given at selected places on the stability
boundaries. The thin parabolic curve indicates the neutral curve R0(α).

10

5

0

–5

–10

–15

–20

–25
0 0.1 0.2 0.3

rr

d

Figure 3. Real parts σr of the growth rate σ as a function of the Floquet wavenumber for the cases
P = 0.8, α = 10.25, R = 45 × 103, η = 4000 (solid line), P = 1.0, α = 10.7, R = 54 × 103, η = 4000
(long dashed lines), and P = 1.0, α = 8.2, R = 22× 103, η = 2000 (short dashed lines).

becomes rather sharp at low Prandtl numbers. Actually both instabilities correspond
to two different maxima of the real part σr of the growth rate σ as function of
d for odd disturbances as can be seen in figure 3. In the examples of this figure
the growth rate of the mean flow disturbances at d = 0 with σi = 0 exceeds that
of the second maximum. But at lower Prandtl numbers this situation is reversed.
From the figure it is also evident that a switch-over of the eigenvalues takes place
in the neighbourhood of P = 1 depending on the rotation parameter η. For higher
Prandtl numbers the mean flow instability maximum and the resonance maximum
thus correspond to different branches of the growth rate σ. Once the transition to
mean flow convection has occurred the resonance instability manifests itself in a
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Figure 4. Same as figure 2, but in the case P = 0.06, η = 4000.

modified form as the vacillation instability known from earlier work (Or & Busse
1987; Schnaubelt & Busse 1992). But since the instability plays a different role at low
Prandtl number and also because of the switch-over phenomenon we prefer to use
the term resonance instability.

In addition to the odd disturbances, even disturbances restrict the region of stable
thermal Rossby waves towards low and high wavenumber α. These sideband insta-
bilities correspond to vanishingly small values of d in the neighbourhood of the
critical Rayleigh number and are called Eckhaus instability in this case. But at higher
Rayleigh number a second maximum of σr at a finite value of d develops and replaces
the boundary corresponding to the infinitesimal value of d on the high-α side as
indicated in figure 2.

The entire situation changes as the Prandtl number is decreased. Figure 4 shows a
typical stability diagram for values P of order 0.05. The symmetric thermal Rossby
waves are no longer stable in the neighbourhood of the neutral curve and their region
of stability has been reduced to a small sliver paralleling the low-α branch of the
neutral curve. The right-hand branch of the sideband instability with infinitesimal d
becomes independent of R, while the branch corresponding to finite values of d has
moved to the left and parallels the left-hand branch of the sideband instability. This
rapid change of the sideband instability boundaries has been noted by Or (1990). But
because of insufficient numerical resolution it was not recognized in that paper that
the thermal Rossby waves become unstable near the critical Rayleigh number. The
major part of the stability boundary towards higher values of R still corresponds to
the modulation instability which was not considered by Or (1990). For lower values
of η, this stability boundary moves to much higher values of R and just a small band
of stable symmetric thermal Rossby waves remains paralleling the left-hand branch
of the neutral curve. For even lower values of the Prandtl number the thin band of
stability disappears entirely as can be seen in the paper of Or & Herrmann (1995).

Since the processes discussed here happen at small amplitudes of convection, it
seems possible to describe them within weakly nonlinear theories. Accordingly we
shall use two different approaches in §§4 and 5 for the description of the sideband
instabilities and the resonance instability, respectively.
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Figure 5. Dependence of coefficients b and c in the complex Ginzburg–Landau equation (4.1) on
η and P . Stationary solutions are unstable to the left of the dotted line corresponding to criterion
(4.2).

4. A generalized complex Ginzburg–Landau equation
The complex Ginzburg–Landau equation represents a universal description for

large-scale variations of one-dimensional dynamical patterns. For a review we refer to
the article by Cross & Hohenberg (1993). The equation is usually written in the form

∂T Â = Â+ (1 + ib)∂2
Y Y Â− (1 + ic)|Â|2Â, (4.1)

where Â represents the amplitude of the thermal Rossby wave scaled by (R − Rc)
which varies on the long scale Y in the y-direction and depends on the slow time scale
T . It is well known that solutions with constant A corresponding to Rossby waves
with the critical wavenumber αc are unstable in the neighbourhood of the critical
Rayleigh number Rc when the Newell criterion (Newell 1974)

1 + bc < 0 (4.2)

is satisfied. As has already been discussed by Herrmann & Busse (1994) the instability
of thermal Rossby waves at R = Rc shown in figure 4 is described by the criterion
(4.2). In figure 5 the parameters b and c are related to the parameters η and P of the
thermal Rossby waves. In figure 6 the region in the (P , η)-plane for which thermal
Rossby waves are unstable according to the criterion (4.2) at R = Rc is outlined. It is
of interest to note that at very small Prandtl numbers P the thermal Rossby waves
regain their stability at R = Rc. Because of its symmetry with respect to α = αc,
(4.1) is clearly not suited to describe the asymmetric stability boundaries beyond the
critical Rayleigh number. Asymmetric terms of higher order become important since
the original prefactor of the cubic term is proportional to P 2 in the limit of small
Prandtl numbers as can be seen from (4.4d) given below. Accordingly we consider
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Figure 6. The region in the (P , η)-plane where thermal Rossby waves are unstable at the critical
value Rc of the Rayleigh number based on the Newell criterion (4.2).

the following generalized complex Ginzburg–Landau equation (GCGLE):

∂

∂t
A = s(R − Rc)A+ β

∂2

∂y2
A− δ|A|2A+ γA

∂

∂y
|A|2, (4.3)

where the abbreviations

s =
∂

∂R
σ (α, R)|αc,Rc = iαcξ/τ, (4.4a)

β = −1

2

∂2

∂α2
σ (α, R)|αc,Rc = (−iαcc(αc) + 6α2

c + 4π2 − Rcξ2 − 2iαcvg)τ
−1, (4.4b)

vg = − ∂

∂α
σi (α, R)|αc,Rc = (−c(αc)α2

c + 1
2
η − 2iαc(π

2 + α2
c)− Rcξ(1− iαcξ))2τ−1, (4.4c)

δ = P 2α2
cRcξ(ξ∗ − ξ)/4τ, (4.4d)

γ = iα3
c(3− α2

cπ
−2)/8τ+ . . . , (4.4e)

ξ = −iαc(α
2
c + π2 − iαcc(αc)P )−1, (4.4f)

τ = α2
c + π2 − Rcξ2P (4.4g)

have been used. ξ∗ denotes the complex conjugate of ξ. For γ the rather lengthy full
expression has not been written explicitly. The terms not given in (4.4e) vanish in the
limit P → 0, however. Even though these terms make only a small contribution at
low Prandtl numbers, they have been taken into account in the actual calculations.
Equation (4.3) has been derived in the same way as the usual Ginzburg–Landau
equation through the introduction of the slowly varying complex amplitude A(y, t),

ψ(x, y, t) = (A(y, t) exp{iαc(y − ct)}+ c.c.) sinπ(x+ 1
2
) + h.o.t., (4.5)

where c.c. indicates the complex conjugate and higher-order terms (h.o.t.) have not
been denoted explicitly. But we have dispensed with the introduction of scaled vari-
ables in order to make solutions of (4.3) more directly comparable with the numerical
results of the Galerkin method. Since A(y, t) varies on a length scale of order A−1, the
last term of (4.3) is of fourth order. There are other terms of fourth order in addition
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to this, but they have not been included since they vanish in the limit P → 0 which
is of primary interest.

In the analysis of sideband instabilities on the basis of the GCGLE we start with
spatially periodic solutions of the form

A(y, t) = A0 exp{iqy + iµt}, (4.6a)

with

|A0|2 = (sr(R − Rc)− βrq2)/δr, (4.6b)

µ = si(R − Rc)− βiq2 − δi|A0|2, (4.6c)

where the subscripts r, i refer to the real and imaginary parts, respectively. It is obvious
from (4.6b) that the departure q of the wavenumber from the critical value αc must
be limited to small values when R − Rc is a small positive number. The stability of
(4.6) with respect to infinitesimal long-wave disturbances Ã can be studied with the
ansatz

A(y, t) = (A0 + Ã(y, t)) exp{iqy + iµt}, (4.7)

where a real A0 can be assumed without losing generality. The linearized equation
for Ã derived from (4.3) assumes the form

∂

∂t
Ã = 2iqβ

∂

∂y
Ã+ β

∂2

∂y2
Ã− A2

0

(
δ − γ ∂

∂y

)
(Ã+ Ã∗), (4.8)

which can be solved by a solution of the form

Ã(y, t) = a1 exp{idy + σt}+ a2 exp{−idy + σ∗t}. (4.9)

The solvability condition for the two linear homogeneous equations for a1 and a∗2
yields the following equation for σ:

σ2 + 2σ(2iqβid + βrd
2 + (δr − iγrd)A

2
0)+ | β |2 d2(d2 − 4q2)

+ (β(δ∗ − iγ∗d)(2q + d)− β∗(δ − iγd)(2q − d))A2
0d = 0. (4.10)

The wavenumber d in (4.9) has the same meaning as the Floquet wavenumber in the
Galerkin representation (2.6). Indeed, a Floquet ansatz can be used in place of the
ansatz (4.7), (4.9) which results in the same quadratic equation (4.10) for σ. For d = 0
this equation yields the solution σ = 0 corresponding to an infinitesimal shift of (4.6)
in the y-direction. For small but finite values of d we obtain for σ = σr + iσi

σr = d2{2q2β2
r | δ |2 A−2

0 /δr − βrδ2
r − βiδiδr − 2qβr(γrδi − γiδr)}δ−2

r + o(d4), (4.11a)

σi = 2q(βrδiδ
−1
r − βi) + o(d3). (4.11b)

Accordingly solutions of the form (4.6) are unstable for

δr(βrδr + βiδi) + 2qβr(γrδi − γiδr) < 0. (4.12)

If this criterion is not satisfied they can be stable only if

R − Rc >
βr

sr
q2

[
1 +

2 | δ |2
δ2
r + δiδrβi/βr + 2q(γrδi − γiδr)

]
. (4.13)

Condition (4.12) implies that (4.6) is unstable for the critical wavenumber, q = 0,
when βrδr + βiδi < 0 which is identical with the Newell criterion (4.2). Since the first
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Figure 7. Sideband instability boundaries of thermal Rossby waves in the (R, α)-plane based on the
GCGLE (4.2) in the case η = 4000 for different Prandtl numbers P as indicated. The boundaries
corresponding to the onset of sideband disturbances with infinitesimal values of d are shown by
thick lines, and the onset of instability corresponding to finite values of d is indicated by the dashed
lines. Thermal Rossby waves are only stable to the left of the dashed lines in the upper plots. The
thin parabolas indicate the neutral curve.

term in the wavy bracket of (4.11a) tends to zero with increasing Rayleigh number,
the wavenumber

qs = − δr(βrδr + βiδi)

2βr(γrδi − γiδr)
(4.14)

represents an asymptotic R-independent stability boundary. This boundary is quite
apparent in the stability diagram of figure 4. It is also apparent in the set of stability
diagrams of figure 7 where it can be seen that qs moves to positive values with
increasing Prandtl number P , then disappears as the denominator of (4.14) goes
through zero and reappears at negative values in the case P = 0.1.

The stability boundaries of figure 7 agree remarkably well with those of the Galerkin
computations. This agreement includes the sideband stability boundary corresponding
to finite values of d which can be obtained from the evaluation of the full expression
(4.10). Since the relevant values of d are only a few percent of αc the GCGLE still
provides a good approximation.

5. Amplitude equations for the resonance instability
The success in describing the sideband instabilities in the weakly nonlinear limit

motivates us to try a similar description for the resonance instability. We start with
the expansion in powers of the amplitude A1 of a periodic symmetric thermal Rossby
wave (Busse & Or 1986),

ψ(x, y, t) = A1 exp{iαy + iωt} sin π(x+ 1
2
) + c.c. + h.o.t., (5.1a)
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Θ(x, y, t) = −
iA1α sin π(x+ 1

2
)

π2 + α2 + iω1P
exp{iαy + iωt}+ c.c.

+
Pα2A2

1(π
2 + α2)/2π

ω2
1P

2 + (π2 + α2)2
sin 2π(x+ 1

2
) + h.o.t., (5.1b)

R = R0(α)(1 + A2
1P

2 (π2 + α2)α2/2

ω2
1P

2 + (π2 + α2)2
+ h.o.t.), (5.1c)

ω = ω1 + h.o.t. with ω1 ≡ ω0(α), (5.1d)

where terms of order A3
1 and higher (h.o.t.) have not been denoted explicitly. We

superimpose an infinitesimal disturbance of the form

ψ̃(x, y, t) = Ã2 exp{idy + iω2t+ σ2t} sin π(x+ 1
2
) with ω2 ≡ ω0(d), (5.2)

i.e. we take into account only the term with l = 0 and n = 1 in (2.6a). The expression
for the complex growth rate σ can be written in the form

σ2 = σ0(R, d) + b21 | A1 |2 (5.3)

where σ0(R, d) denotes the complex growth rate determined from the linear part of
(2.1), i.e. σ0(R0(α), α) ≡ iω0(α). The coefficient b21 is given by a complex expression
which simplifies in the limit of low Prandtl numbers to

b21 →
π2(d2 − α2)

4(d2 + π2)

{
(α+ d)2((α− d)2 − α2 + 3π2)

(σ(2)(R, d− α) + i(ω1 − ω2))((α− d)2 + 4π2)

+
(α− d)2((α+ d)2 − α2 + 3π2)

(σ(2)(R, α+ d)− i(ω1 + ω2))((α+ d)2 + 4π2)

}
for P → 0, (5.4)

where σ(2)(R, δ) denotes the complex growth rate of the mode proportional to
exp{iδy} sin 2π(x + 1

2
) based on the linear part of (2.1). In the limit of P → 0

with ηP kept constant the real and imaginary parts of the function σ(2)(R, δ) can be
written down readily:

σ
(2)
i =

−δη
4π2 + δ2

,

σ(2)
r =

[
Rδ2 − δ2η2P 2

4π2 + δ2
− (4π2 + δ2)3

] [
(4π2 + δ2)2 +

δ2η2P 2

(4π2 + δ2)2

]−1

,

 (5.5)

but at finite Prandtl numbers more complex expressions arise and real and imaginary
parts of σ(2) can not easily be given separately. Because the frequencies in the
denominators of (5.4) increase with η the second term on the right-hand side of (5.3)
cannot compensate the usually negative contribution to the real part of the first term
for large η. But in the case of a resonance at the wavenumber d = d0,

σ
(2)
i (R, d0 − α) + ω1 − ω2 = 0, (5.6)

positive real parts σ2r do indeed become possible. Since we are assuming 0 < d < α
the resonance given by (5.6) is the only one occurring in (5.4). The resonance also
provides the justification for neglecting the disturbance

ψ̃ ∝ exp{i(α− d)y + iω3t+ σt} sin π(x+ 1
2
) with ω3 ≡ ω0(α− d), (5.7)

which together with the mode (5.2) forms a coupled system of disturbances and which
is included in the sideband instability mechanisms discussed in the preceding section.
But since there is only one resonating term (except in the special case d0 = α/2 which
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Figure 8. Real parts σr of the growth rate of the resonance instability as a function of d for
α = 4.0, P = 0.05 in the cases η = 6000, R = 4255 (long dashed line), η = 5000, R = 3290 (short
dashed line), η = 4000, R = 2500 (thin solid line), η = 3000, R = 1890 (dotted line). For comparison
σr based on the approximate expression (5.3) has been plotted (thick solid line) for the same
parameter values as the long dashed line.
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Figure 9. Resonance wavenumber d0 (thick line) and coefficient f0 (thin line, right ordinate) as a
function of α in the case P = 0.

is not realized) the assumption of neglecting the part (5.7) of the growing disturbance
is indeed justified.

The following properties of the resonance instability can be deduced:
(i) Since all terms involved in the resonance condition (5.6) are proportional to

η, or nearly so at low values of P , the resonating disturbance wavenumber d0 is
independent of η as is borne out in figure 8 where the real part σr of the growth rate
derived from the numerical stability analysis is plotted for different values of η. For
comparison σr given by the approximate analytical expression (5.3) is also shown.
The resonating wavenumber d0 is plotted in figure 9 as a function of α for the case
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Figure 10. Rayleigh number R for the onset of the resonance instability in the case η = 4000 for
three different Prandtl numbers as indicated. The analytical results (solid lines) are compared with
the results of the numerical Galerkin method.

P = 0. Almost within the thickness of the line the expression derived from condition
(5.6) agrees with the numerical results for small Prandtl number.

(ii) Expression (5.3) also allows us to compute the half-width of the resonance
peak of σr ,

b21r ∝ [(σ(2)
r (R, α− d0))

2 + η2f2
0(d− d0)

2]−1 for | d− d0 |� 1, (5.8)

where the subscript r refers to the real part and f0 is a constant independent of η.
Expression (5.8) clearly describes the decrease of the width of the resonance peak
with increasing η, which is also visible in the numerical data of figure 8. On the other
hand the broadening of the resonance with decreasing η becomes so strong that the
resonance is no longer clearly distinguished within the general sideband mechanism
of instability for η of the order of 103. For this reason the resonance instability
disappears in the stability diagram of figure 2 when η is changed from 4000 to 1000
(Herrmann 1996). Of course, the analytical expression (5.3) also ceases to provide a
good approximation at such low values of η.

(iii) Since the real parts of the first term on the right-hand side of (5.3) in-
crease approximately linearly with R and since the second term is proportional to
R −R0(α) according to (5.1c) we obtain the following approximate expression for the
Rayleigh number RR for the onset of the resonance instability above the neutral curve
R = R0(α):

RR(α)− R0(α) = −σ0r(R0(α), d0)

[
b21

P 2(π2 + α2)2
+

1

2

∂σ0

∂R

∣∣∣∣
R0 ,d0

+ c.c.

]−1

. (5.9)

The comparison of this analytical expression with the numerical results in figure 10
indicates again the remarkably good agreement between the two approaches.
In discussing the resonance instability we have emphasized the low-Prandtl-number
regime where this instability occurs at relatively low Rayleigh numbers. The reso-
nance mechanism operates at higher values of P as well, but the amplitude of the
basic symmetric thermal Rossby wave decreases in proportion to 1/P for a fixed
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Figure 11. The stream function ψ(0, y) for a particular instance of time in the case of modulated
thermal Rossby waves computed with the full Galerkin method (solid lines) and with the GCGLE
for P = 0.03, η = 4000, S = 30 and R = 1495 (a) and R = 1500 (b). The dashed lines have been
obtained by multiplication of the envelope solution (6.1) by exp{iαcy}. The values of R for the
dashed lines exceed those mentioned above by 5.

supercritical value of the Rayleigh number and thus the value of RR increases far
beyond the neutral curve R0(α) such that the onset of the resonance instability is
preceded by the mean flow instability.

6. Modulated thermal Rossby waves
The symmetric thermal Rossby waves which are unstable with respect to sideband

instabilities become transformed into modulated thermal Rossby waves. The latter can
be described as solutions of the GCGLE as well as with the Galerkin representation
(2.4). For the solution of (4.3) we use the ansatz

A(y, t) =

N∑
n=−N

an(t) exp{i(nq + q0)y} with q ≡ 2π

S
, (6.1)

where S is the periodicity interval and where q0 is a small wavenumber to accommo-
date the difference between the basic wavenumber α of the thermal Rossby wave and
its critical value αc. A typical choice for S is 30 since this value is also accessible with
the Galerkin ansatz (2.4). In figure 11 a comparison is shown between the solutions
obtained by the two methods. The fact that the best comparison is obtained when
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Figure 12. Time dependence of the amplitudes A41 (solid lines), A51 (dotted lines) and A91 (dashed
lines) for the case P = 0.03, η = 4000, S = 15 and R = 1680 (a) and R = 1710 (b). The amplitudes
Aln are defined by Aln ≡ (â2

ln + ǎ2
ln)

1/2 based on the Galerkin representation (2.4) with α = 2π/S .

the Rayleigh number in the GCGLE is increased by 5 can be attributed to the fact
that the parabolic neutral curve of the GCGLE lies at somewhat higher values of
R than R0(α). The modulation corresponds to the excitation of two thermal Rossby
waves with wavenumbers differing by q or 2q which propagate rather independently
such that the modulation propagates with the group velocity vg = −dω/dα.

The relative simplicity of the GCGLE allows us to use much higher values of
the periodicity interval. But no rules for the preferred wavelength of the envelopes
have been found. In offering periodicity lengths S from 50 up to 300 it was found
that usually the modulation wavelength corresponds to the periodicity interval S , but
nearly as often an envelope with several wavelengths in the periodicity interval is
realized. It obviously depends on initial conditions which kind of solutions of the
form (6.1) is assumed. In general it is found that the dominant wavenumbers in
the Galerkin solutions as well as in GCGLE solutions of the form (6.1) follow the
left-hand branch of the neutral curve as the Rayleigh number is increased. As the
Rayleigh number is increased further, the similarity between solutions of the Galerkin
scheme and of the GCGLE disappears. More coefficients in the representation (2.4)
participate in the dynamics and a complex periodic time dependence develops which
does not lead to chaotic solutions, however. Two examples of those solutions are
shown in figure 12.

The evolution of the streamline pattern with increasing R from the simply modu-
lated thermal Rossby waves at R = 1500 to more complex time-dependent structures
can be seen in figure 13. The increase with R of the average wavelength is noticeable
and even the return to a periodic pattern of symmetric thermal Rossby waves can
be observed in the last plot of the figure. Such simple solutions may be unstable,
however, if the periodicity interval S is increased.

Although the ordinary CGLE as given by (4.1) is known to have chaotic solutions,
such solutions have not been obtained from the GCGLE (4.3) in the low-Prandtl-
number regime of interest in the present analysis. The fourth-order term on the
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Figure 13. Instantaneous plots of the streamlines ψ(x, y, t) = const. for the case
P = 0.03, η = 4000, S = 15 for R = 1500, 1560, 1620, 1680, 1740, 1800 (from top to bottom).

right-hand side of (4.3) apparently changes the qualitative properties of the solutions
as long as it is comparable to the preceding term.

7. Evolution of the resonance instability
In the case of the resonance instability it is also possible to follow the evolution

of the bifurcating solution with a simpler system of equations than that obtained
on the basis of the full Galerkin representation (2.4) for an appropriately extended
periodicity interval in the y-direction. The mechanism of the instability suggests the
consideration of three coupled amplitude equations

d

dt
A1 = (σ0(R, α)− iω1 +

3∑
j=1

c1j | Aj |2)A1 + r1A2A3, (7.1a)

d

dt
A2 = (σ0(R, d)− iω2 +

3∑
j=1

c2j | Aj |2)A2 + r2A1A
∗
3, (7.1b)

d

dt
A3 = (σ(2)(R, α− d)− i(ω1 − ω2) +

3∑
j=1

c3j | Aj |2)A3 + r3A1A
∗
2, (7.1c)

corresponding to a solution of the form

ψ(x, y, t) = [A1(t) exp{iαy + iω1t}+ A2(t) exp{idy + iω2t}] sin π(x+ 1
2
)

+A3(t) exp{i(α− d)y + i(ω1 − ω2)t} sin 2π(x+ 1
2
) + c.c. + h.o.t. (7.2)

where the definitions (5.1d) and (5.2) have been used. The coefficients cij and ri,
i, j = 1, 2, 3, involve lengthy expressions and will not be given here explicitly. In
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Figure 14. The amplitude A ≡ 2(
∑
|Ai|2)1/2 derived from the 3-mode system (7.1) as a function of

R for P = 0.1, η = 4000, α = 5.4, d = 0.54. The thick solid line indicates periodic thermal Rossby
waves, A2 = A3 = 0. The thin solid line denotes modulated thermal Rossby waves with a steady
value of A and the dashed line indicates the time average of A for the vacillation state. Circles
indicate solutions obtained from the full Galerkin scheme.

the actual calculation the functions σ0 and σ(2) have been replaced by their Taylor
expansion

σ0(R, α) = σ0(R0(α), α) +
∂σ0

∂R

∣∣∣∣
R0 ,α

(R − R0(α)), (7.3a)

σ0(R, d) = σ0(R0(α), d) +
∂σ0

∂R

∣∣∣∣
R0(α),d

(R − R0(α)), (7.3b)

σ(2)(R, α− d) = σ(2)(R0(α), α− d) +
∂σ(2)

∂R

∣∣∣∣
R0(α),α−d

(R − R0(α)). (7.3c)

The three coupled equations (7.1) can be justified rigorously only at a codimension-3
point of the system from which the actual calculations are far removed if such a
point exists at all. The strongest deviation must be expected in the case of the third
mode described by the amplitude A3(t). For large values of η the relative differences
between the lowest Rayleigh numbers of modes proportional to sinπ(x + 1

2
) and

sin 2π(x+ 1
2
) tend to vanish, however, as has been discussed by Busse (1986). It thus

can be expected that the approximation provided by the system (7.1) will improve
with increasing η. For a general discussion of amplitude equations describing the
interaction of three resonating waves we refer to the book by Craik (1985).

As an example of the evolution of the resonance instability we consider the case of
d = 0.54, α = 5.4 for P = 0.1, η = 4000 which can easily be solved in the case of the full
Galerkin representation (2.4) and with the three coupled amplitude equations (7.1).
The results show rather close agreement as can be seen from the comparison shown
in the bifurcation diagram of figure 14. From the onset of the resonance instability
at RR = 5450 up to Rv = 5517 the amplitudes |An(t)| remain constant in time and
describe a modulated thermal Rossby wave. At R = Rv this stationary mixed solution
becomes unstable to the onset of oscillations which we call amplitude vacillations
because of their similarity with the vacillations found at higher Prandtl numbers
(Schnaubelt & Busse 1992). As must be expected there are some slight quantitative
differences between the calculations based on the 3-mode system (7.1) and the full



226 J. Herrmann and F. H. Busse

(a)

(b)

5 10

A1

t
15 20

0

8

2

6

4

8

2

6

4

0

A1

Figure 15. The amplitude A1 (dashed line) derived from the 3-mode system (7.1) and the corre-
sponding amplitude A10,1 ≡ (â2

10,1 + ǎ2
10,1)1/2 of the full Galerkin solution as a function of time for

P = 0.1, η = 4000, α = 5.4, d = 0.54 and R = 5550 (a) and R = 5600 (b).

Figure 16. Plots of streamlines ψ(x, y, t) = const. at equidistant times, 0.588 apart, (from top to
bottom) obtained from time integrations with the Galerkin representation (2.4) with α = 0.54 in the
case η = 4000, P = 0.1, R = 5600. The dominant mode of convection corresponds to α1 = 5.4.
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η αc Rc RR Rv RR − Rc Rv − Rc
3000 4.72 3805 3825 3883 20 78
4000 5.40 5427 5448 5510 21 83
5000 5.97 7185 7206 7270 21 85
6000 6.45 9058 9080 9145 22 87
7000 6.88 11034 11056 11122 22 88
8000 7.26 13102 13125 13191 23 89
9000 7.62 15254 15277 15344 23 90

10000 7.94 17483 17507 17574 24 91

Table 1. Critical Rayleigh numbers Rc (onset of convection), RR (onset of resonance instability),
and Rv (onset of vacillation) at the critical value αc of the wavenumber for different values η for
the case P = 0.1
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Figure 17. The amplitude A21 ≡ (â2
21 + ǎ2

21)1/2 as a function of time for P = 0.1, η = 4000, R = 6125
(a) and R = 6300 (b). The aspect ratio S equals 30 corresponding to α = π/15 in the representation
(2.4). A logarithmic scale is used for the spectrum plotted on the right-hand side of the time series.

numerical solutions as shown in figure 15. But apart from these differences in the
frequency and amplitude of vacillation there can be no doubt that both solutions
describe the same phenomenon. To visualize the time dependence of the convection
flow in real space a time sequence of plots of the stream function ψ is shown in
figure 16 covering one period of oscillation. The growth of amplitude of the basic
convection mode corresponding to A1(t) in (7.2) and the subsequent growth of the



228 J. Herrmann and F. H. Busse

modulation amplitude A2(t) followed by a rather sudden collapse of the convection
flow are clearly evident from the figure.

The dependence of the transition Rayleigh numbers RR and Rv on η is apparent
from table 1. Although the critical wavenumbers αc and the magnitudes of the
Rayleigh numbers vary strongly, the differences RR − Rc and Rv − Rc show only
a slight change indicating that the onset of instabilities depends primarily on the
amplitude of convection for fixed P .

As already apparent from figure 15, the differences between the 3-mode approach
(7.1) and the full numerical treatment of the problem become larger with increasing
Rayleigh number and the similarity between the two types of approximate solutions
diminishes as new instabilities occur which introduce new frequencies into the time
dependence. The numerical integration in time based on the Galerkin scheme (2.4)
with the periodicity interval S = 30 show a transition to a chaotic time dependence
as shown in figure 17. The vacillation frequency in the neighbourhood of ω ≈ 10 is
still dominant in the spectrum of the time records shown in the figure. But at even
higher Rayleigh numbers structures in the spectrum tend to disappear.

8. Concluding remarks

The analysis of this paper shows that a rich variety of dynamical features charac-
terize convection in a rotating cylindrical annulus at low Prandtl numbers. Because of
the large parameter space of the problem only some typical examples corresponding
to relatively low Rayleigh numbers could be demonstrated in the preceding sections.
A few more details can be found in chapter 3 of Herrmann (1996). Features that can
be described on the basis of simpler equations than the full equations of motion have
been emphasized. On the one hand the problem treated in this paper may serve as a
physically realistic case for the application of envelope equations such as the CGLE
and modifications thereof. On the other hand the dynamical behaviour of convection
flows described by simple equations will be useful in the interpretation of results from
numerical simulations of convection in rotating spherical fluid shells.

It is possible to realize low-Prandtl-number convection in a cylindrical annulus
in a laboratory experiment. In fact, Azouni, Bolton & Busse (1986) have used
mercury in such an experiment, but the measuring devices in their apparatus were not
sophisticated enough to convey a good impression of the time-dependent dynamics
of the convection columns. Unfortunately, it is not easy to visualize convection flows
in low-Prandtl-number fluids such as mercury or other liquid metals. But with the
new results reported in this paper it should be possible to design measuring methods
which allow one to distinguish between the different dynamical regimes.

The nonlinear dynamics that can be studied in the annulus convection problem
in a two-dimensional setting represents the simplest form of the dynamics that are
expected in rotating self-gravitating fluid spheres. From experimental observations (see
the review of Busse 1994) it is quite clear that the convection retains its approximately
two-dimensional structure far into the turbulent regime. There is thus no doubt that
the annulus problem will provide valuable insights into important questions such as
the generation of mean zonal flows by convection and the dependence of the heat
transport on the external parameters as regimes of high Rayleigh number are reached.
Such insights will be especially important in the case of low-Prandtl-number fluids
which are of primary interest for planetary and stellar applications.
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